If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2-6t-10=0
a = 1; b = -6; c = -10;
Δ = b2-4ac
Δ = -62-4·1·(-10)
Δ = 76
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{76}=\sqrt{4*19}=\sqrt{4}*\sqrt{19}=2\sqrt{19}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{19}}{2*1}=\frac{6-2\sqrt{19}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{19}}{2*1}=\frac{6+2\sqrt{19}}{2} $
| 4x/20+3x/10=7x/5+29/15 | | 6a÷7=24 | | X-15+3x=7 | | p/6-(-8=9 | | 25x-13=5x | | 50-5g/5=15 | | (2x-11)2+(x+1)=66x+47 | | 2=2+4x | | k+1/k=1-((k^2)-3k-4)/4k | | k+1/k=1-(((k^2)-3k-4)/4k) | | 296=4(6q-4) | | 2/x+5=15 | | k+1/k=4k | | 10-2e=8 | | 34-(x-5)=0 | | 4k(k+1/k)=0 | | 5(3x+5/2)=4x+7 | | b²+2b=-20 | | P(x)=x^2-4x+3 | | 2p/3-p/6=7/3 | | |2x-10|=26 | | (n^2)-7n-8=0 | | -9-4a=-53 | | 5{2m-6)=12 | | -(k^2)-3k-8=0 | | 3(b+5)=6 | | P^2-p=1 | | 2t-+7=-1 | | 11+-24=a | | 1x+8/9x=12 | | 11-24=a | | 8q+5=9q |